Abstract
The structural transformation of supramolecular nanostructures with constitutional diversity and adaptability by dynamic coordination chemistry would be of fundamental importance for potential applications in molecular switching devices. The role of halogen doping in the formation of elementary metal-organic motifs on surfaces has not been reported. Now, the 9-ethylguanine molecule (G) and Ni atom, as a model system, are used for the structural transformation and stabilization of metal-organic motifs induced by iodine doping on Au(111). The iodine atoms are homogeneously located at particular hydrogen-rich locations enclosed by G molecules by electrostatic interactions, which would be the key for such an unexpected stabilizing effect. The generality and robustness of this approach are demonstrated in different metal-organic systems (G/Fe) and also by chlorine and bromine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.