Abstract

We explore the complexity of counting solutions to conjunctive queries, a basic class of queries from database theory. We introduce a parameter, called the quantified star size of a query ϕ, which measures how the free variables are spread in ϕ. As usual in database theory, we associate a hypergraph to a query ϕ. We show that for classes of queries for which these associated hypergraphs admit good decompositions, e.g., bounded width generalized hypertree decompositions, bounded quantified star size exactly characterizes the subclasses of hypergraphs for which counting the number of solutions is tractable. In the case of bounded arity, this allows us to fully characterize the classes of hypergraphs for which counting the solutions is tractable. Finally, we also analyze the complexity of computing the quantified star size of a conjunctive query.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.