Abstract

In the design optimization process design variables are selected in the deterministic way though those have uncertainties in nature. To consider variances in design variables reliability-based design optimization problem is formulated by introducing the probability distribution function. The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop singlevariable approach, requires the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop singlevariable approach, which approximates searching the most probable point analytically, to reduce the time cost and dealing with several constraints to handle practical design requirements. The density method in topology optimization including SLP (Sequential Linear Programming) algorithm is implemented with object-oriented programming. To examine uncertainties in the topology design of a structure, the modulus of elasticity of the material and applied loadings are considered as probabilistic design variables. The results of a design example show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call