Abstract

We present a detailed analysis of the general influence of short branches on the structural, topological, and rheological behaviors of entangled short-chain branched (SCB) polyethylene (PE) melt systems under shear flow via direct comparison with the corresponding linear analogs using extensive atomistic nonequilibrium molecular dynamics (NEMD) simulations, for a wide range of flow strengths. In comparison with the linear melt, the SCB systems generally exhibit more compact chain structures and larger dynamic resistance, in response to an imposed flow field at all flow strengths. These features essentially arise from (i) the increased chain stiffness due to the torsional restriction of backbone atoms around the branch points and (ii) the fast random Brownian motion of short branches via their very short characteristic relaxation time. We analyzed various structural and rheological properties, such as anisotropic chain dimension and orientation and their detailed distributions, topological characteristics of the entanglement network, material functions, chain rotation dynamics, and flow birefringence. Distinctive physical characteristics of the entangled SCB systems exposed by these individual properties can be consistently understood based on the fundamental structural and dynamical roles of short branches. These findings are considered informative in our systematic understanding and prediction for the general rheological behaviors of long entangled SCB polymer systems under flow, and in tuning the material properties of SCB polymers in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call