Abstract

ABSTRACTInsight into the topographic and mechanical properties of biomaterials allows for efficient selection of a material for a specific application. Here, atomic force microscopy (AFM) and force spectroscopy were exploited to reveal the topographic and mechanical characteristics of charcoal‐purified, solvent‐cast polyhydroxyoctanoate (PHO) film. The root mean square surface roughness of a PHO surface derived from ethyl acetate, acetone, or chloroform solution was 13.2, 11.5, or 30.9 nm, respectively, for 100 μm2 AFM images. The distribution of the local Young's modulus had a maximum of 25.4, 14.1, and 12.6 MPa for PHO films obtained from ethyl acetate, acetone, and chloroform solution, respectively. The positron annihilation spectroscopy measurements allowed us to determine the free volume in the polymer film structure (9.38%). Moreover, a number of additional techniques (X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, NMR, infrared spectroscopy, and polarized light microscopy) were used to reveal PHO features. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47192.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.