Abstract

We present molecular dynamics simulation results of two representative cases of nanowires (NWs) of binary alloys, a glass former (ZrCu) and an alloy that becomes amorphous under chemical substitution of its elements (Zr 2Ni). The simulations were based on semiempirical potential models in analogy to the tight-binding scheme in the second moment approximation. We explored the structural characteristics of NWs of various sizes, and we determined several quantities like melting points, strain–stress curves and Young's modulus. We found that for all NWs, the Zr terminations are energetically favored, while Zr 2Ni NWs adopt rounded cross-sectional shapes and ZrCu, octagonal. From the obtained results, it is established that most of the NW properties differ substantially from those exhibited by their bulk counterparts; e.g., lower melting points and greater yield strengths, while under tensile strain they exhibit clear brittle character. In addition, it is found that their mechanical response to deformation is not very sensitive to the imposed strain rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.