Abstract

Face–centered cubic–Bi2O3 (δ–phase) material is a better ion conductor when compared to other types of solid electrolytes that have been declared in the literature due to its anion–defective crystal configuration, and hence it can be a promising solid electrolyte choice for intermediate temperature SOFC applications. In this research, Er–Ho–Tb co–doped Bi2O3 compounds were successfully synthesized by the solid–state reaction method and characterized using the XRD, TG & DTA, FPPT, and FE–SEM techniques. Apart from sample 4Er4Ho4Tb, each sample became stable with a cubic δ–phase at room temperature, according to XRD patterns. The DTA curves revealed no exothermic or endothermic peaks, implying a phase change in the constant heating cycle. The conductivity of Ho–rich compositions was higher than that of others, confirming the impact of cation polarizability on conductivity. In addition, at 700 °C, the sample 4Er8Ho4Tb with 1:2:1 content ratios had the highest conductivity of 0.29 S/cm. The porosity on the grain boundaries increased with doping, leading to higher grain boundary resistance, which could be responsible for the conductivity drop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call