Abstract

Lead containing barium zinc lithium fluoroborate (LBZLFB) glasses doped with different concentrations of trivalent dysprosium ions were synthesized by conventional melt quenching method and characterized through the XRD, DSC, FTIR, FT-Raman, optical absorption, photoluminescence and decay curve analysis. X-ray diffraction studies revealed amorphous nature of the studied glass matrices. The thermal behavior has been reported by recording DSC thermograms. Coexistence of trigonal BO3 and tetrahedral BO4 units was evidenced by IR and Raman spectroscopy. Judd–Ofelt intensity parameters have been evaluated for 1.0mol% Dy3+ ions doped LBZLFB glass. The measuring branching ratios are reasonably high for transitions 4F9/2→6H15/2 and 6H13/2 suggesting that the emission at 486 and 577nm, respectively can give rise to lasing action in the visible region. From the visible emission spectra, the yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were estimated. A combination of blue and yellow emissions has emerged in the glasses, which allows the observation of white light when the glasses are excited by the ultraviolet/blue light. These Dy3+ doped glasses are studied for their utility for white light generation under 454nm excitation and the present LBZLFB glass is more suitable for generation of white light for blue LED chips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.