Abstract

Organic–inorganic hybrid membranes based on poly(vinylidene fluoride-co-hexa fluoropropylene) (PVdF-HFP)/sulfosuccinic acid were fabricated with different nanometer sizes of silica particles. Morphological images reveal the embedded ceramic filler over the membrane. Structural characterizations were made by FT-IR and XPS, ensure the inclusion of sulfosuccinic acid and silica into the PVdF-HFP polymer matrix. Sulfonic acid groups promote the IEC values and greater swelling behavior. Silica content in the hybrid membranes had a great effect on crystalline character as well as thermal properties of the membranes. Decrease in the filler size creates an effective route of polymer–filler interface and promotes the protonic conductivity of the membranes. The high conductivities in the range of 10 −2 to 10 −3 S cm −1 were achieved through synergistic interactions between the organic and inorganic moieties of the hybrid membranes. Due to these splendid features, the prepared hybrid membranes can be a trademark in the field of fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.