Abstract

The Ti and Mn replaced complex perovskites, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln0.5Sr0.5Ti0.5Mn0.5O3±d complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials.XRD results showed that Ln0.5Sr0.5Ti0.5Mn0.5O3±d oxide systems synthesized as single phases did not react with 8mol% yttria stabilized zirconia (8YSZ) and 10mol% Gd-doped cerium oxide (CGO91) up to 1500°C and did not decompose under dry 3.9% hydrogen at 850°C. The crystal structures of La0.5Sr0.5Ti0.5Mn0.5O3±d (LSTM), Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.