Abstract

<p>Located in northern Morocco, the Rif belt represents the western edge of the Maghrebides system. This domain underwent a significant Cenozoic alpine compressional deformation, due to the collision between the North African margin and the south-western margin of the exotic Alboran Domain. This collision led to the development of a nappe stack during the Miocene.</p><p>This contribution aims to characterize the main tectonic mechanisms driving the evolution of the Rifain wedge, its burial-exhumation paths and to understand the former architecture of the North African paleo-margin. The work focuses mainly on the Flysch domain, originated from the Maghrebian branch of the Tethys and on the External domain (namely Intrarif, Mesorif and Prerif) that belong to the former north African margin. To define the thrust sheet stacking pattern and their burial-exhumation paths, a regional transect from Chefchaouen and Ouezzane towns (Central Rif), crossing the orogenic wedge from the Flysch to the Prerif Units is constructed.</p><p>The methodological approach consists in combining petrography and Raman micro-spectroscopy on organic matter and 1D thermal modelling, together with field structural data.</p><p>A new paleo-thermal data set of vitrinite reflectance (Ro%) and Raman micro-spectroscopy displays levels of thermal maturity between early and deep diagenetic conditions (Ro% ranges from 0.50% to 1.15%).</p><p>Preliminary results show an abrupt change in the thermal maturity and the rate of shortening in the Loukkos sub-unit (Intrarif Domain) that is structurally squeezed between Tangier sub-unit (Intrarif Domain) and the “Izzaren Duplex” (Mesorif).</p><p>Furthermore, previous studies show that the thickest crust below the Rif fold-and-thrust belt is located below the Izzaren area, suggesting a deep crustal imbrication at the transition between the Intrarif and the Mesorif. These observations joined with the thermal maturity data and 1D thermal modelling allow revisiting the structural evolution of the central part of the Rif belt, by defining the rate of shortening and proposing a new geological restoration with respect to the Mesozoic North African margin structural original setting.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call