Abstract

Laser light scattering and transmission electronic microscopy have been used to study the self-assembled structures of mono- and bisadducts of fullerene carboxylic acids in tetrahydrofuran (THF) and their sodium salts in aqueous solutions, respectively. In THF, the self-association of monoadducts of fullerene carboxylic acid (MFCA) produces large but narrowly distributed particles with R(h) approximately 145 nm. The self-aggregates from the bisadducts of fullerene carboxylic acid (BFCA) in THF are relatively small in size (R(h) approximately 80 nm) due to the better solubility. After the ionization of carboxylic acid groups on the C(60) cage in dilute NaOH solutions, these aggregates dissolved and reorganized. The self-assembly of the monoadducts of sodium carboxylate fullerenes (MSCF) produces small solid spherical particles with R(h) approximately 32 nm. The ratio of R(g)/R(h) approximately 0.83 indicates that the particles have a nearly uniform density. The increase in concentrations leads to strong interparticle associations to form rodlike and irregularly shaped large aggregates. In contrast, the self-assembly of bisadducts of sodium carboxylate fullerenes (BSCF) results in hollow shells with mainly two different size scales of R(h) approximately 23 nm and R(h) approximately 104 nm. At high concentrations, the hollow shells associate and melt together to generate three-dimensional networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call