Abstract

Ni–Ce and Ni–Pt bimetallic catalysts supported over α-Al2O3 are synthesized by using co-impregnation method, and then reduced, each via radiolytic process or thermal H2-treatment. For Ni-Ce/Al2O3, the structural study reveals that Ce is alloyed with Ni as Ce2Ni7 nanoparticles in the radiation-reduced catalysts, while it segregates to the surface in the form of CeO2 in the H2-reduced catalysts. For Ni-Pt/Al2O3 radiolytic catalysts, Ni, Pt, NiPt and Ni3Pt nanoparticles, which size is 3.5nm, are observed. When the radiation-reduced samples are tested in the benzene hydrogenation, they both display high conversion rate. However, the Ni-Pt/Al2O3 is more efficient than Ni-Ce/Al2O3. The performance of the catalysts is correlated with the high dispersion of the metal and the presence of intermetallic Ni–Pt and Ni–Ce phases. It is compared to that of other radiolytic monometallic/oxide catalysts of the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call