Abstract
The rise of multidrug-resistant bacteria, such as Staphylococcus aureus, has highlighted global urgency for new classes of antibiotics. Biotin protein ligase (BPL), a critical metabolic regulatory enzyme, is an important target that shows significant promise in this context. Here we report the in silico docking, synthesis, and biological assay of a new series of N1-diphenylmethyl-1,2,3-triazole-based S. aureus BPL (SaBPL) inhibitors (8-19) designed to probe the adenine binding site and define whole-cell activity for this important class of inhibitor. Triazoles 13 and 14 with N1-propylamine and -butanamide substituents, respectively, were particularly potent with K i values of 10 ± 2 and 30 ± 6 nM, respectively, against SaBPL. A strong correlation was apparent between the K i values for 8-19 and the in silico docking, with hydrogen bonding to amino acid residues S128 and N212 of SaBPL likely contributing to potent inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.