Abstract

In this work, nitrogen-doped hierarchical porous carbon (NPC) was obtained from an effective and facile synthesis route based on metal-organic framework (MOF)-drive approach using Zr-metal-organic framework (UiO-66-NH2) as a template. The structural analysis of synthesized NPC using different heat treatment was performed through X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption isotherm at 77K characterization. The results achieved indicate that Zr-MOF is an appropriate starting precursor to attain functional carbon materials with remarkable physicochemical properties for potential advanced applications. Thereby, it was evidenced that the NPC synthesis temperature has an influence on resulting structural properties as well as nitrogen functionalities and amount. Thereby, the obtained NPC exhibits a disorder porous structure with high BET surface area (765–867 m2/g), pore size from microporous to mesoporous, and 3–4% of N content. Related to nitrogen functionalities, the heteroatom corresponds to quaternary, pyrrolic, and pyridinic bonding, indicating that it was successfully incorporated into the carbon framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.