Abstract

The structure of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa immunotype 1 was studied after mild acid and strong alkaline degradations by MS and NMR spectroscopy. Three types of LPS molecules were found, including those with an unsubstituted glycoform 1 core (A) or an isomeric glycoform 2 core substituted with one O-polysaccharide repeating unit (B) or with a long-chain O-polysaccharide. Therefore, of two core glycoforms, only glycoform 2 accepts the O-polysaccharide. In the structures A and B, Kdo, Hep, Hep7Cm, GalNAcAN3Ac, GalNFoAN, QuiNAc, GalNAla represent 3-deoxy-d-manno-octulosonic acid, l-glycero-d-manno-heptose, 7-O-carbamoyl-l-glycero-d-manno-heptose, 2-acetamido-3-O-acetyl-2-deoxygalacturonamide, 2-formamido-2-deoxygalacturonamide, 2-acetamido-2,6-dideoxyglucose and 2-(l-alanylamino)-2-deoxygalactose, respectively; all sugars are in the pyranose form and have the d configuration unless otherwise stated. One or more phosphorylation sites may be occupied by diphosphate groups. In a minority of the LPS molecules, an O-acetyl group is present in the outer core region at unknown position. The site and the configuration of the linkage between the O-polysaccharide and the core and the structure of the O-polysaccharide repeating unit were defined in P. aeruginosa immunotype 1. The QuiNAc residue linked to the Rha residue of the core was found to have the beta configuration, whereas in the interior repeating units of the O-polysaccharide this residue is in the alpha-configuration. The data obtained are in accordance with the initiation of biosynthesis of the O-polysaccharide of P. aeruginosa O6, which is closely related to immunotype 1, by transfer of d-QuiNAc-1-P to undecaprenyl phosphate followed by synthesis of the repeating O-antigen tetrasaccharide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call