Abstract

C 10N 2O 2H 14, M r=194.23, triclinic, itP1. At T=298 K: a=7.0292 (12), b=7.0394 (14), c=21.761 (2) Å, α=97.637 (13), β=97.326 (12), γ=96.14 (2)°, V=1050.0 (3) Å 3, Z=4, D x=1.229 Mg m −3, λ(Cu Kα)=1.54184 Å, μ=6.7 cm −1, F(000)=416 and R=0.037 for 4268 unique observed diffractometer data (itI≥ 2.5σ(itI)). At T=100 K: a=6.8724 (4), b=6.8748 (6), c=21.773 (3) Å, α=96.680 (8), β=97.010 (7), γ=94.558 (6)°, V= 1009.5 (2) Å 3, Z=4, D x=1.278 Mg m −3, λ(Mo Kα)=0.71073 Å, μ=0.8cm −1, F(000)=416 and R=0.056 for 3765 unique observed diffractometer data (itI≥2.5σ(itI)). At room temperature the methyl group C atoms have a high thermal motion which is possibly librational. The molecules form NH⋯0-type hydrogen-bonded networks, each oxygen accepting three hydrogen bonds. A systematic search for the so-called AH⋯B moieties which are thought to be responsible for the sweet taste revealed a number of possible candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call