Abstract
A structural study based on EXAFS, FTIR, and optical absorption spectroscopies has been conducted on a photogenerated, metastable state of cyclopentadienylnitrosylnickel (CpNiNO) produced by a reversible photochemical reaction. The photogenerated, metastable state with distinctively different EXAFS, FTIR, and optical absorption spectra from those of the ground state was created by irradiating the sample at 20 K with the 365-nm line of a mercury lamp. On the basis of the analysis of the EXAFS data, the photogenerated, metastable state of CpNiNO has undergone considerable nuclear rearrangements compared to its ground state. The nuclear movement is characterized by a 0.12-angstrom elongation of the Ni-N bond and by a bending of the Ni-N-O. A shift of the N-O stretching frequency from 1824 to 1387n cm[sup [minus]1] was observed in the photoinduced reaction with 365-nm light, consistent with previous studies. 15 refs., 10 figs., 1 tab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.