Abstract

Penicillin acylases are used in the pharmaceutical industry for the preparation of antibiotics. The 3-D structure of Penicillin G acylase from Escherichia coli has been solved. Here, we present structural data that pertain to the unanswered questions that arose from the original strucutre. Specificity for the amide portion of substrate was probed by the structure determination of a range of complexes with substitutions around the phenylacetyl ring of the ligand. Altered substrate specificity mutations derived from an in vivo positive selection process have also been studied, revealing the structural consequences of mutation at position B71. Protein processing has been analyzed by the construction of site-directed mutants, which affect this reaction with two distinct phenotypes. Mutations that allow processing but yield inactive protein provide the structure of an ES complex with a true substrate, with implications for the enzymatic mechanism and stereospecificity of the reaction. Mutations that preclude processing have allowed the structure of the precursor, which includes the 54 amino acid linker region normally removed from between the A and B chains, to be visualized. Index Entries: Penicillin acylase; 3-D structures; site-directed mutagenesis; substrate binding; autocatalytic processing; precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.