Abstract

The low-density lipoprotein (LDL) receptor plays a key role in maintaining circulating and cellular cholesterol homeostasis. The LDL receptor is a transmembrane glycoprotein whose biochemical and genetic properties have been extensively studied notably by Brown, Goldstein and colleagues [Brown, M. S., & Goldstein, J. L., (1986) Science 232, 34-47]. However, few if any structural studies of the LDL receptor have been reported, and details of its secondary and tertiary structure are lacking. In an attempt to determine the low-resolution structure of the LDL receptor, we have purified the receptor from bovine adrenal cortices using modifications of the method of Schneider et al. [Schneider, W. J., Goldstein, J. L., & Brown, M. S. (1985) Methods in Enzymol.109, 405-417]. Using circular dichroism, the secondary structure of the detergent-solubilized bovine LDL receptor at 25 degrees C was shown to be 19% alpha-helix, 42% beta-sheet, and 39% random coil. Interestingly, the detergent-solubilized receptor appeared to be quite resistant to changes in secondary structure over the temperature range 10-90 degrees C, with only minor but reversible changes being observed. In contrast, a more pronounced unfolding of the detergent-solubilized receptor was observed in the presence of guanidinium hydrochloride. Using the complete sequence of the human LDL receptor, sequence analysis by the Chou-Fasman prediction algorithm showed quite good agreement with the experimentally determined secondary structure of the bovine LDL receptor at 25 degrees C. Finally, the purified, bovine LDL receptor was reconstituted into large unilamellar vesicles of egg yolk phosphatidylcholine using a procedure exploiting preformed vesicles and detergent dialysis. We showed previously using negative stain electron microscopy that reconstituted vesicles bind LDL. Now, using cryoelectron microscopy of frozen hydrated reconstituted vesicles evidence of an extended, stick-like morphology (length approximately 120 A) for the extracellular domain of the LDL receptor has been obtained. Successful purification of the receptor, its incorporation into single bilayer vesicles, and its direct visualization by cryoelectron microscopy pave the way for more detailed structural studies of the LDL receptor and the receptor-LDL complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call