Abstract

High-energy X-ray diffraction has been used to study the structure of multi-wall carbon nanotubes, produced by template pyrolytic carbon deposition from thermal decomposition of propylene inside channels of an alumina membrane. X-ray diffraction intensities were measured on the powdered samples employing an image plate detector, integrated over the diffraction rings and converted to a radial distribution function by the Fourier transform. Defective hexagonal networks, generated by introducing the pentagon–heptagon pairs were rolled up to form regular cylinders and relaxed with a conjugate-gradient algorithm using the Brenner–Tersoff potential. A comparison of the simulated and experimental radial distribution functions shows that the model of the multi-wall carbon nanotubes, based on the defective nanotube structures, accounts very well for the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.