Abstract
Melme-CC (pGlu-Leu-Asn-Tyr-Ser-Pro-Asp-Trp amide) and Declu-CC (pGlu-Leu-Asn-Phe-Ser-Pro-Asn-Trp-Gly-Asn amide) are members of the insect adipokinetic hormone family with very different activities in the locust bioassay. The conformations of both peptides were determined in water and in a phospholipid (DPC) micelle solution using nuclear magnetic resonance (NMR) restrained molecular dynamics simulations.In water, Melme-CC has one dominant conformation while in DPC solution it has two preferred conformation. In water, Declu-CC has two conformations but in DPC solution it has one preferred conformation, which is similar to one of the water conformations. All the conformations have type IV β-turn between residues 4 and 7.The binding of the two peptides to the DPC micelle is different. Melme-CC does not bind strongly to the surface and is oriented with the β-turn facing the surface. Declu-CC interacts more strongly with the β-turn facing away from the surface. Both termini having hydrophobic interactions with the surface. In Declu-CC the side chain of Asn7 projects away from the chain while in Melme-CC the Asp7 side chain is folded inside the chain. The different orientation of these side chains may account for the much higher biological activity of Declu-CC in mobilizing lipids in the locust compared to the poor biological effect of Melme-CC in this bioassay. Receptor binding of Declu-CC was tested using a model AKH receptor from Anopheles gambiae. A free energy of binding of −38.5kJmol−1 was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.