Abstract

A protein destined for export from the cell cytoplasm is synthesized as a preprotein with an amino-terminal signal peptide. In Escherichia coli, typically signal peptides that guide preproteins into the SecYEG protein conduction channel are subsequently removed by signal peptidase I. To understand the mechanism of this critical step, we have assessed the conformation of the signal peptide when bound to signal peptidase by solution nuclear magnetic resonance. We employed a soluble form of signal peptidase, which laks the two transmembrane domains (SPase I Δ2-75), and the E. coli alkaline phosphatase signal peptide. Using a transferred NOE approach, we found clear evidence of a weak peptide-enzyme complex formation. The peptide adopts a U-turn shape originating from the proline residues within the primary sequence that is stabilized by its interaction with the peptidase and leaves key residues of the cleavage region exposed for proteolysis. In dodecylphosphocholine (DPC) micelles the signal peptide also adopts a U-turn shape comparable with that observed in association with the enzyme. In both environments this conformation is stabilized by the signal peptide phenylalanine side chain-interaction with enzyme or lipid mimetic. Moreover, in the presence of DPC, the N-terminal core region residues of the peptide adopt a helical motif and based on PRE (paramagnetic relaxation enhancement) experiments are shown to be buried within the membrane. Taken together, this is consistent with proteolysis of the preprotein occurring while the signal peptide remains in the bilayer and the enzyme active site functioning at the membrane surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.