Abstract

A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigated through the incorporation of 2'-modified RNA-like residues or PN conjugates containing ionizable pendant moieties. We also demonstrate that single cationic dimethylethylenediamine PN linkages have little effect on siRNA potency, whether located in the passenger or guide strand of the duplex. Highly modified siRNA passenger strands were further modified with up to four cationic PN linkages, with little effect on duplex potency or helical structure. We envision that PN modifications could be useful in the production of therapeutic siRNAs with optimal biological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.