Abstract

The vertical stiffness of a tire is the ratio of the vertical force to the deflection; it can be expressed as the summation of the structural stiffness and air stiffness. However, the calculation of the structural stiffness is a challenging topic. This paper presents a new methodology for extracting the structural stiffness from the strain energy of a regular tire. In order to verify our proposed method, the vertical force-deflection results from the finite element method is compared with those from the strain energy method at zero air pressure. Also the results for an inflated tire are compared to calculate the structural stiffness. Finally, we calculated the contribution ratio of the tire components and used an alternative way of extracting the structural stiffness based on changing the Young’s modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.