Abstract

PurposeThe purpose of this paper is to propose a type of hybrid bearing lubricated with supercritical carbon dioxide (S-CO2) and to investigate the stiffness and damping characteristics of the bearing under hydrostatic status.Design/methodology/approachEstablished a test rig for radial bearings lubricated with S-CO2 and used it to measure the dynamic coefficients by recording the relative and absolute displacements of bearing. Test bearing is mounted on a nonrotating, stiff shaft. Using static loading experiments to obtain structural stiffness. The dynamic coefficient regularities of the test bearing under hydrostatic status were revealed through dynamic loading experiments.FindingsExperiment results indicate that test bearing displayed increased stiffness when subjected to high excitation frequencies and low excitation forces, as well as elevated damping when exposed to low excitation frequencies and low excitation forces. Additionally, an increase in either environmental pressure or hydrostatic recess pressure can elevate the dynamic coefficient. The effect of temperature on the dynamic coefficient is more pronounced around the critical temperature of S-CO2.Originality/valueDesigned a type of hybrid bearing for use in the Brayton cycle that is lubricated with S-CO2 and uses hydrostatic lubrication during start-stop and hydrodynamic lubrication during high-speed operation. The hybrid bearing reduces the wear and friction power consumption of gas bearing. However, few experimental analyses have been conducted by researchers in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.