Abstract

The time evolution of the Al, Si ordering and the ferroelastic distortion of the Mg-cordierite structure are quantified on a local length scale by Hard Mode Infrared Spectroscopy (HMIS). The line profiles of various absorption peaks were measured at room temperature and at 80 K. Their integrated intensities, frequencies and half width are correlated with the interacting order parameters Q od (Al, Si ordering), Q (displacive orthorhombic distortion) and their equivalent short-range analogs. It is shown that the phase transition between hexagonal and modulated cordierite is stepwise, as predicted earlier. The local structural state of quenched, modulated cordierite is essentially equivalent to that of the orthorhombic phase. A general concept is outlined which allows, in general, the independent determination of various interacting order parameters using HMIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.