Abstract
The rapidly growing population in the world demands an increase in the support of human life by providing massive production of food and medicine. As a result, the catalyst used in the production of the material plays a key role leading to intensive research. Synthesis of nanomaterials is becoming an important way to discover new catalysts by changing sizes and combining two or more metals on the nanoscale. Pd-based catalysts are well-known catalysts such as Pd-Pt, Pd-H, and Pd-Au for many chemical reactions such as the direct synthesis of hydrogen peroxide. Therefore, the provision of nanocluster bimetallic catalysts offers more benefits such as the rearrangement of surfaces to suit characteristics and lower material costs. However, the stability of the catalyst challenges researchers beyond reactivity and selectivity. In this paper, we predict the structural stability of Pd-based catalysts using a density functional theory approach. We use the 38-atom model in the M6@Pd32 core shell, where M is Hg, Pt, Au, Cu, Ni, Cu, Zn, Ag, Pd, and Cd, Pt. We prepared and investigated a series of structures such as truncated octahedral (TO) and polyhedral (PH) by calculating the excess energy. Based on our calculations and placing the monometallic Pd38 nanocluster as a reference, the TO structure is more stable than that of PH. The Zn6@Pd32 system showed the most stable followed by Cd6@Pd32 and Hg6@Pd32 was the worst.
 Keywords: structural stability, core-shell, nanocluster, Pd-based catalyst
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.