Abstract

Hydrazine borane (N2H4BH3) has attracted considerable interest as a promising solid-state hydrogen storage material owing to its high hydrogen content and easy preparation. In this work, pressure-induced phase transitions of N2H4BH3 were investigated using a combination of vibrational spectroscopy, X-ray diffraction, and density functional theory (DFT) up to 30 GPa. Our results showed that N2H4BH3 exhibits remarkable structural stability in a very broad pressure region up to 15 GPa, and then two phase transitions were identified: the first one is from the ambient-pressure Pbcn phase to a Pbca phase near 15 GPa; the second is from the Pbca phase to a Pccn phase near 25 GPa. As revealed by DFT calculations, the unusual stability of N2H4BH3 and the late phase transformations were attributed to the pressure-mediated evolutions of dihydrogen bonding frameworks, the compressibility and the enthalpies of the high-pressure polymorphs. Our findings provide new insight into the structures and bonding properties of N2H4BH3 that are important for hydrogen storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.