Abstract
The structural, mechanical, lattice-dynamic, anisotropic, electronic and thermal properties of M2SX (M=Sc, Y; X=B, C, N) are investigated based on density functional theory. The calculated results indicate that all the phases satisfy the thermodynamic, mechanical and dynamic stability criteria. The mechanical properties are in good agreement with the reported values, and the results show that Sc2SN exhibits the highest bulk modulus B (145.7 GPa), shear modulus (103.0 GPa) and Young’s modulus E (250.0 GPa) with brittle behavior. The elastic anisotropy of M2SX indicates that Sc2SC is the most isotropic among the 6 phases. The electronic structure reveals that Sc2SC and Y2SC are indirect-bandgap semiconductors with 0.927 eV and 1.260 eV bandgap, and the other phases exhibit metallic characteristics. The Debye temperature, lattice thermal conductivity, minimum thermal conductivity, heat capacity and entropy have also been calculated for M2SX phases. The tendency for lattice thermal conductivity in high temperature: K lat (M2SN) > K lat (M2SC) > K lat (M2SB). All the present calculated data will provide useful guidance for development and research on the novel S-based MAX phases in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.