Abstract

We report on first-principles total-energy and phonon calculations that clarify structural stability and electronic properties of freestanding bilayer silicene. By extensive structural exploration, we reach all the stable structures reported before and find four new dynamically stable structures, including the structure with the largest cohesive energy. We find that atomic protrusion from the layer is the principal relaxation pattern which stabilizes bilayer silicene and determines the lateral periodicity. The hybrid-functional calculation shows that the most stable bilayer silicene is a semiconductor with the energy gap of 1.3 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.