Abstract

Exploring two-dimensional materials with excellent photoelectricity properties is of great theoretical significance and practical value for developing new photocatalysts, electronics and photonic devices. Here, using first-principle calculations, we designed and analyzed systematically a series of α, β and γ phase structures of two-dimensional group IV-V monolayers (IV-V, IV = C, Si, Ge, Sn, Pb; V = N, P, As, Sb, Bi), most of them are semiconductors. Among them, γ-GeN and α-SnP monolayers with thermodynamic and kinetic stability (at 300 K) have been further studied due to their wide range of energy band gaps (γ-GeN: 2.54 eV, α-SnP:1.34 eV). The two band gaps are greater than the free energy for water splitting (1.23 eV), which are crucial for photocatalytic decomposition of water. The γ-GeN and α-SnP monolayers present excellent photocatalystics properties in pH = 0/7 and pH = 10 environments, respectively. Moreover, both of the monolayers show strong light absorption coefficients greater than 105 cm−1 in the visible and ultraviolet regions. In addition, it is found that the band edge positions and band gap sizes of γ-GeN and α-SnP monolayers can be regulated by biaxial strain. Benefitting from the wide selection of energy band gaps and high absorption coefficients, the γ-GeN and α-SnP monolayers are the next generation of promising candidate materials for photocatalysts, nanoelectronics and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.