Abstract
Based on the high-throughput first-principles calculations with structural recognition, we have ystematically investigated the structural stabilities and optical properties of SixGeyHz nanocrystals(H-SiGeNCs), including various sizes, shapes and compositions. The total energies of H-SiGeNCs can be simply estimated by the bond energy model in high accuracy, where the error of test set is less than 0.5 meV per atom. According to the energy difference of Si/Ge in various bonding environments, we have determined the ground state structures by the geometry analysis, as is confirmed the convex hulls of formation enthalpy from the first-principles calculations. In addition, the energy gaps of H-SiGeNCs are modulated by the atomic distributions, as well as the vibrations of Si-H and Ge-H bonds at room temperature which is revealed by ab initio molecular dynamics simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.