Abstract

Different solid state and sol–gel preparations of undoped and Mn substituted cathode material LiFePO 4 are investigated. Li 3PO 4, Fe 2P 2O 7 and Li 4P 2O 7 are detected and quantified by XRPD only in solid state synthesis. In addition, micro-Raman spectra reveal low amount of different iron oxides clusters. EPR data, combined with the results of magnetization measurements, evidence signals from Fe 3+ ions in maghemite nanoclusters, and in Li 3Fe 2(PO 4) 3. The sol–gel synthesis, showing the lowest amount of impurity phases, seems the most suitable to obtain a promising cathode material. The structural refinement gives new insights into the cation distribution of the Mn doped triphylite structure: (i) about 85% of Mn 2+ ions substitutes Fe 2+, the remaining 15% being located on the Li site, thus suggesting a structural disorder also confirmed by EPR and micro-Raman results; (ii) Mn ions on the Li site are responsible for the observed slight cell volume expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.