Abstract

In this paper we presented structural and spectroscopic study of zinc silicate powder samples doped with divalent nickel and cobalt ions. Results of the Rietveld structural refinement, combined with optical spectroscopic study and theoretical crystal field calculations, are presented and discussed. X-ray diffraction studies were performed to establish reliable structure of the doped samples; in this way the interionic distances and chemical bond angles in Zn2SiO4:Co2+ and Zn2SiO4:Ni2+ were calculated and are reported for the first time. The room temperature reflection spectra of the prepared samples were measured in a spectral region from 4000 to 50000 cm−1. The exchange charge model of crystal field has been applied to analyze the experimental spectra and assign all observed details in the spectra to the corresponding electronic transitions between the Co2+ and Ni2+ crystal field energy levels. The only input information for the model calculation was the experimentally obtained structural data, which were used for the calculations of the crystal field parameters with subsequent diagonalization of the crystal field Hamiltonian for both ions. Agreement between the calculated and experimentally detected energy levels of impurity ions was good. On the basis of the crystallographic and crystal field studies it was established that there exists a systematic trend of preferential occupation of one out of two possible crystallographic sites (namely, Zn2) for both impurity ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call