Abstract

Reported are the syntheses and characterization of five compounds containing one-dimensional uranyl fluoride chains charge balanced by 4-X-pyridinium (X = H, F, Cl, Br, I) cations. Structural analysis reveals molecular assembly via noncovalent interactions in the second coordination sphere with the X···Oyl interaction distances ranging from 2.987(7) to 3.142(3) Å, all of which are less than or close to the sum of the van der Waals radii. These interactions were probed via luminescence and Raman spectroscopy, where the latter indicates slight differences in the U═O symmetric stretches as a consequence of U═O in-phase and out-of-phase Raman-active stretches. The decrease in the X···Oyl sum of the van der Waals overlap between comparable compounds within the series manifests as a red-shifting trend among the Raman symmetric stretches. Computational density functional theory (DFT)-based frequency, electrostatic potential surfaces (ESPs), and natural bonding orbital (NBO) methods support the observed Raman spectroscopic features and provide a comprehensive rationale for assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.