Abstract

The β-barrel assembly machinery (BAM) is a multicomponent complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria, with conserved systems in both mitochondria and chloroplasts. Given its importance in the integrity of the outer membrane and in the assembly of surface exposed virulence factors, BAM is an attractive therapeutic target against pathogenic bacteria, particularly multidrug-resistant strains. While the mechanism for how BAM functions remains elusive, previous structural studies have described each of the individual components of BAM, offering only a few clues to how the complex functions. Recently, a number of structures have been reported of complexes, including that of fully assembled BAM in differing conformational states. These studies have provided the molecular blueprint detailing the atomic interactions between the components and have revealed new details about BAM, which suggest a dynamic mechanism that may use conformational changes to assist in the biogenesis of new OMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call