Abstract
The design process is no longer a trial-and-error procedure due to the introduction of computer-aided tools and optimization techniques. The product development process is therefore accelerated, allowing to produce more in a relatively lesser time. Moreover, the best possible design, with regard to the performance, can hence be obtained. When applied to the design of an aircraft wing, the optimization objective is usually to minimize the structural weight under failure-based constraints. This paper presents an optimization strategy that allows the determination of the wing surface structural thicknesses corresponding to the minimal weight while keeping the structure safe in terms of strength and buckling. This strategy is applied for the wing sizing process of a new two-seater very light aircraft, currently under development. The design process goes through geometric modeling, aerodynamic calculations using vortex lattice method, and finite element modeling. Structural optimization is performed within MATLAB, and is based on the automatic execution of the finite element solver MSC.NASTRAN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.