Abstract

This paper presents some results of experiments which simulate the structural dynamic response of a LMFBR primary coolant boundary to a hypothetical core disruptive accident (HCDA) based on scale models and high explosives. It was noted that high explosives are no longer a good simulant of the HCDA. However, the main purpose of the program, which included this experiment, is not to experimentally predict the dynamic response of the reactor structure at the HCDA, but to validate computer codes, which describe the pressure wave propagation and damage process in the reactor structures, using data obtained from these model experiments. The experiments were undertaken using many 1/15 scale simple models of the reactor vessels and internal structures, as well as 1/15 and 1/7.5 scale complex models of the interim design of prototype LMFBR ‘MONJU’. Simple model experiments involved a series of shock tests using pentolite to investigate the configuration effects of the vessel restraining section, the dipped-plate effect and the core barrel effect, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call