Abstract
To rapidly and effectively assess the bridge seismic-resistant capability, it is essential to conduct efficient predictions of bridge seismic responses. Recently, physics informed neural network (PINN) has made great progress and utilized to solve differential equations in different fields. However, how to increase its accuracy and efficiency still remains an open challenge. In this work, a novel gradient-enhanced Fourth-Order Runge-Kutta PINN (gRK4-PINN), as a powerful hybrid PINN, is utilized to achieve this goal. As for gRK4-PINN, the physical information is not simply embedded into the loss function; instead, the RK4 method and the physical model is intricately integrated with the neural network. In addition, to improve the predictive performance, additional gradient equation is directly embedded in loss function. A large-span continuous girder high speed railway (CGHSR) bridge is adopted as numerical experiment to validate the fidelity of the proposed method. Results reveal that the Mean Absolute Error (MAE) of the predicting seismic responses is relatively small, whose value is below 0.014 in most of the time. These small MAE values indicate that the proposed gRK4-PINN performs well in predicting the seismic responses of the CGHSR bridge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.