Abstract

In this paper, a data-driven approach to localizing structural damage subjected to ground motion is proposed by using the fractal dimension of the time-frequency features of structural dynamic responses. The time-frequency feature is defined as the real part of wavelet coefficient and the fractal dimension adopts the box-counting method. It is shown that the proposed fractal dimensions at each story of linear system are identical, while the fractal dimension at the stories with nonlinearity is different from those at the stories with linearity. Therefore, the nonlinear behavior of structural damage caused by strong ground motions can be detected and localized through comparing the fractal dimensions of structural responses at different stories. Shaking table test on a uniform 16-story 3-bay steel frame with added friction dampers modelling interstory nonlinear behavior was conducted. The experiment results validate the effectiveness of the proposed method to localize single and multi seismic damage of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.