Abstract

(+)-18-crown-6 tetracarboxylic acid (18C6H4) has been used as a chiral selector for D/L-amino acids in HPLC, where L-isomer is usually eluted prior to D-isomer, except for the case of serine. To clarify why serine exhibits the reverse order for the elusion, the chiral interactions of D- and L-serines with (+)-18C6H4 were investigated by the X-ray single crystal analyses, together with the case of D- and L-glutamic acids, which exhibit the usual elution order in HPLC. The backbone structures (amino, Calpha-H and carboxyl groups) of these four amino acids showed the nearly same interaction with (+)-18C6H4 despite their different chirality. In contrast, the hydroxyl group of L-serine side chain formed a hydrogen bond with the carboxyl group of (+)-18C6H4, whereas such a interaction was not formed for the side chain of D-serine and D- and L-glutamic acids. Thus, it was shown that the exception of D/L-serine from the first elution rule of L-isomer in HPLC is due to the presence and absence of a hydrogen bond formation of its side chain OH group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.