Abstract

ZntA from Escherichia coli confers resistance to toxic concentrations of Pb2+, Zn2+, and Cd2+. It is a member of the P1B-ATPase transporter superfamily, which includes the human Cu+-transporting proteins ATP7A and ATP7B. P1B-type ATPases typically have a hydrophilic N-terminal metal-binding domain and eight transmembrane helices. A splice variant of ATP7B was reported, which has 100-fold higher night-specific expression in the pineal gland; it lacks the entire N-terminal domain and the first four transmembrane helices. Here, we report our findings with Δ231-ZntA, a similar truncation we created in ZntA. Δ231-ZntA has no in vivo and greatly reduced in vitro activity. It binds one metal ion per dimer at the transmembrane site, with a 15-19000-fold higher binding affinity, indicating highly significant changes in the dimer structure of Δ231-ZntA relative to that of ZntA. Cd2+ has the highest affinity for Δ231-ZntA, in contrast to ZntA, which has the highest affinity for Pb2+. Site-specific mutagenesis of the metal-binding residues, 392Cys, 394Cys, and 714Asp, showed that there is considerable flexibility at the metal-binding site, with any two of these three residues able to bind Zn2+ and Pb2+ unlike in ZntA. However, Cd2+ binds to only 392Cys and 714Asp, with 394Cys not involved in Cd2+ binding. Three-dimensional homology models show that there is a dramatic difference between the ZntA and Δ231-ZntA dimer structures, which help to explain these observations. Therefore, the first four transmembrane helices in ZntA and P1B-type ATPases play an important role in maintaining the correct dimer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.