Abstract
We present a novel nearest neighbor rule-based implementation of the structural risk minimization principle to address a generic classification problem. We propose a fast reference set thinning algorithm on the training data set similar to a support vector machine approach. We then show that the nearest neighbor rule based on the reduced set implements the structural risk minimization principle, in a manner, which does not involve selection of a convenient feature space. Simulation results on real data indicate that this method significantly reduces the computational cost of the conventional support vector machines, and achieves a nearly comparable test error performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.