Abstract
Quantum machine learning (QML) models based on parameterized quantum circuits are often highlighted as candidates for quantum computing's near-term “killer application''. However, the understanding of the empirical and generalization performance of these models is still in its infancy. In this paper we study how to balance between training accuracy and generalization performance (also called structural risk minimization) for two prominent QML models introduced by Havlíček et al. \cite{havlivcek:qsvm}, and Schuld and Killoran \cite{schuld:qsvm}. Firstly, using relationships to well understood classical models, we prove that two model parameters – i.e., the dimension of the sum of the images and the Frobenius norm of the observables used by the model – closely control the models' complexity and therefore its generalization performance. Secondly, using ideas inspired by process tomography, we prove that these model parameters also closely control the models' ability to capture correlations in sets of training examples. In summary, our results give rise to new options for structural risk minimization for QML models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.