Abstract
Microbial exopolysaccharide is an eco-friendly and non-toxic biopolymeric materials widely used in various industrial fields such as pharmaceutical, food and cosmetics based on its structural, rheological and physiochemical properties. A microbial exopolysaccharide (VF39-EPS) was directly isolated from Rhizobium leguminosarum bv. viciae VF39. Structural analysis using FTIR and 2D NMR spectroscopy confirmed the complete chemical structures of VF39-EPS as 3-hydroxybutanoylglycan with octasaccharide repeating units containing two pyruvyl, two acetyl, and one 3-hydroxybutanoyl group. VF39-EPS exhibited thermal stability up to 275 °C and showed characteristic rheological behaviors of structural fluid with weak gel-like properties above 4 % the aqueous solution, suggesting VF39-EPS as a potential effective thickener or hydrogel scaffolder. Flow behavior tests validated broad stability at a wide range of both pHs from 2 to 12 and temperatures from 25 to 75 °C, and even in the presence of various salts. Furthermore, VF39-EPS showed excellent antioxidant effects of 78.5 and 62.4 % (n = 3, p < 0.001) in DPPH scavenging activity and hydroxyl radical scavenging activity, respectively. Therefore, those structural, rheological and antioxidant properties suggest that VF39-EPS could be one of the excellent biomaterial candidates for cosmetic, food and pharmaceutical industries based on its characteristic rheological behaviors in various condition and excellent antioxidant activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.