Abstract

HypothesisThe structural details, viscosity trends and dynamic phenomena in t-butanol/water solutions are closely related on the molecular scales across the entire composition range. Utilizing the experimental small- and wide-angle x-ray scattering (SWAXS) method, molecular dynamics (MD) simulations and the ‘complemented-system approach’ method developed in our group it is possible to comprehensively describe the structure-viscosity-dynamics relationship in such structurally versatile hydrogen-bonded molecular liquids, as well as in similar, self-assembling systems with pronounced molecular and supramolecular structures at the intra-, inter-, and supra-molecular scales. ExperimentsThe SWAXS and x–ray diffraction experiments and MD simulations were performed for aqueous t-butanol solutions at 25 °C. Literature viscosity and self-diffusion data were also used. FindingsThe interpretive power of the proposed scheme was demonstrated by the extensive and diverse results obtained for aqueous t–butanol solutions across the whole concentration range. Four composition ranges with qualitatively different structures and viscosity trends were revealed. The experimental and calculated zero-shear viscosities and molecular self-diffusion coefficients were successfully related to the corresponding structural details. The hydrogen bonds that were, along with hydrophobic effects, recognized as the most important driving force for the formation of t–butanol aggregates, show intriguing lifetime trends and thermodynamic properties of their formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.