Abstract

The presented work studied the structural response of the hydraulic pneumatic tensioner (HPT) in a TLP-TTR system with failure of the tensioner cylinder. A fully coupled hull-tendon-TTR-tensioner model was established in AQWA to simulate the failure numerically. A specific HPT was modeled by considering 4 cylinders and the real-time stroke of each piston. A set of formulas was proposed to calculate the real-time tension including different components, e.g. Stribeck friction, in the tensioner. A riser array including 6 independent production TTRs and their tensioners was also modeled. The production TTR model was stacked up by different specific riser joints. The hydrodynamic force acting on the hull was obtained by using the 3D potential flow theory. The real-time tensions on different tensioner cylinders were obtained by using an in-house-developed program. Different environmental conditions, including a calm sea, regular waves, and extreme sea states, were considered in the simulations. In the results, the behaviors of different cylinders of the failed tensioner were presented. The results show that when an accidental local failure of the HPT occurs, the tension and stroke responses are still far from the designed-limits to induce a progressive failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.