Abstract

ABSTRACTSurface-induced aromatic stabilization (SIAS), a recently proposed mechanism leading to a formation of charge-transfer (CT) states at organic/metal (O/M) interfaces [G. Heimel, et al., Nat. Chem.5, 187 (2013)], was investigated for an aromatic hydrocarbon, diindenoperylene (DIP), by means of synchrotron radiation-based ultraviolet photoelectron spectroscopy (UPS). By employing DIP and noble metal substrates (Ag and Cu), we confirmed the formation of CT states, indicating that an inclusion of a specific functional group with a hetero-atom within adsorbate molecules as suggested before is not necessarily required for the formation of CT states mediated by the SIAS. With a comparison of the mother and analogue molecules, perylene and PTCDA, we discuss the structural requirement for the realization of the SIAS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call