Abstract

The vesicular acetylcholine transporter (VAChT) regulates the amount of acetylcholine stored in synaptic vesicles. However, the mechanisms that control the targeting of VAChT and other synaptic vesicle proteins are still poorly comprehended. These processes are likely to depend, at least partially, on structural determinants present in the primary sequence of the protein. Here, we use site-directed mutagenesis to evaluate the contribution of the C-terminal tail of VAChT to the targeting of this transporter to synaptic-like microvesicles in cholinergic SN56 cells. We found that residues 481-490 contain the trafficking information necessary for VAChT localization and that within this region L485 and L486 are strictly necessary. Deletion and alanine-scanning mutants lacking most of the carboxyl tail of VAChT, but containing residues 481-490, were still targeted to microvesicles. Moreover, we found that clathrin-mediated endocytosis of VAChT is required for targeting to microvesicles in SN56 and PC12 cells. The data provide novel information on the mechanisms and structural determinants necessary for VAChT localization to synaptic vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.